首页> 外文OA文献 >Hidden Markov modeling for single channel kinetics with filtering and correlated noise.
【2h】

Hidden Markov modeling for single channel kinetics with filtering and correlated noise.

机译:具有滤波和相关噪声的单通道动力学隐马尔可夫建模。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hidden Markov modeling (HMM) can be applied to extract single channel kinetics at signal-to-noise ratios that are too low for conventional analysis. There are two general HMM approaches: traditional Baum's reestimation and direct optimization. The optimization approach has the advantage that it optimizes the rate constants directly. This allows setting constraints on the rate constants, fitting multiple data sets across different experimental conditions, and handling nonstationary channels where the starting probability of the channel depends on the unknown kinetics. We present here an extension of this approach that addresses the additional issues of low-pass filtering and correlated noise. The filtering is modeled using a finite impulse response (FIR) filter applied to the underlying signal, and the noise correlation is accounted for using an autoregressive (AR) process. In addition to correlated background noise, the algorithm allows for excess open channel noise that can be white or correlated. To maximize the efficiency of the algorithm, we derive the analytical derivatives of the likelihood function with respect to all unknown model parameters. The search of the likelihood space is performed using a variable metric method. Extension of the algorithm to data containing multiple channels is described. Examples are presented that demonstrate the applicability and effectiveness of the algorithm. Practical issues such as the selection of appropriate noise AR orders are also discussed through examples.
机译:隐马尔可夫模型(HMM)可以应用于以常规分析太低的信噪比提取单通道动力学。 HMM有两种通用方法:传统的Baum重新估计和直接优化。该优化方法具有直接优化速率常数的优点。这允许在速率常数上设置约束,在不同的实验条件下拟合多个数据集,并处理非平稳通道,其中通道的起始概率取决于未知动力学。我们在这里提出了这种方法的扩展,解决了低通滤波和相关噪声的其他问题。使用应用于基础信号的有限脉冲响应(FIR)滤波器对滤波进行建模,并使用自回归(AR)过程说明噪声相关性。除了相关的背景噪声外,该算法还允许产生过多的白噪声或相关噪声。为了最大化算法的效率,我们针对所有未知模型参数推导了似然函数的解析导数。使用可变度量方法执行似然空间的搜索。描述了将该算法扩展到包含多个通道的数据。给出的例子说明了该算法的适用性和有效性。还通过示例讨论了实际问题,例如选择适当的噪声AR阶数。

著录项

  • 作者

    Qin, F; Auerbach, A; Sachs, F;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号